Land use change simulation and analysis using a vector cellular automata (CA) model: a case study of Ipswich City, Queensland, Australia/

By: Contributor(s): Material type: ArticleArticlePublication details: Sage, 2020.Description: Vol. 47, Issue 9, 2020, ( 1605–1621 p.)Online resources: In: Environment and planning B: planning and design (Urban Analytics and City Science)Summary: The loss of accuracy in vector-raster conversion has always been an issue for land use change models, particularly for raster based Cellular Automata models. Here we describe a vector-based cellular automata (CA) model that uses land parcels as the basic unit of analysis, and compare its results with a raster CA model. Transition rules are calibrated using an artificial neural network (ANN) and historical land use data. Using Ipswich City in Queensland, Australia as the study area, the simulation results show that the vector and raster CA models achieve 96.64% and 93.88% producer’s spatial accuracy, respectively. In addition, the vector CA model achieves a higher kappa coefficient and more consistent frequency of misclassification, while also having faster processing times. Consequently, the vector-based CA model can be applied to explore regulations of land use transformation in urban growth process, and provide a better understanding of likely urban growth to inform city planners.
Tags from this library: No tags from this library for this title. Log in to add tags.
Star ratings
    Average rating: 0.0 (0 votes)
Holdings
Item type Current library Collection Vol info Status
E-Journal E-Journal Library, SPAB E-Journals Vol. 47(1-9), Jan-Dec, 2020 Available
Total holds: 0

The loss of accuracy in vector-raster conversion has always been an issue for land use change models, particularly for raster based Cellular Automata models. Here we describe a vector-based cellular automata (CA) model that uses land parcels as the basic unit of analysis, and compare its results with a raster CA model. Transition rules are calibrated using an artificial neural network (ANN) and historical land use data. Using Ipswich City in Queensland, Australia as the study area, the simulation results show that the vector and raster CA models achieve 96.64% and 93.88% producer’s spatial accuracy, respectively. In addition, the vector CA model achieves a higher kappa coefficient and more consistent frequency of misclassification, while also having faster processing times. Consequently, the vector-based CA model can be applied to explore regulations of land use transformation in urban growth process, and provide a better understanding of likely urban growth to inform city planners.

There are no comments on this title.

to post a comment.
Share

Library, SPA Bhopal, Neelbad Road, Bhauri, Bhopal By-pass, Bhopal - 462 030 (India)
Ph No.: +91 - 755 - 2526805 | E-mail: library@spabhopal.ac.in

OPAC best viewed in Mozilla Browser in 1366X768 Resolution.
Free counter